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ABSTRACT: A number of mining and environmental related problems have been approached using ANN technology. 
These problems commonly relate to pattern classification, prediction and optimisation. ANNs have been successfully 
applied to these areas and are therefore suitable for similar mining and environmental problems. The general trend in 
the mining industry for automation to the greatest degree calls for technologies such as the ANNs that can utilise large 
amounts of data for the development of models which otherwise are very difficult or sometimes even impossible to 
identify. The examples presented in this paper support the choice of ANNs as the basis for developing solutions to 
mining and environmental problems were conventional techniques fail in one way or another. 
 
1 INTRODUCTION 

Artificial intelligence (AI) tools have been in 
use for years in a number of mining related 
applications. Expert and knowledge based systems, 
probably the most popular AI tools, have found their 
way into a number of computer-based applications 
supporting everyday mining operations as well as 
production of mining equipment. In recent years, AI 
has provided tools for optimising operations and 
equipment selection, problems involving large 
amounts of information that humans cannot easily 
cope with in the process of decision-making. These 
AI systems together with an ever-increasing number 
of sophisticated purpose-built computer software 
packages have created a very favourable 
environment for the introduction of yet another 
powerful AI tool, the Artificial Neural Networks. 

In the ‘90s the mining industry has been 
introduced to a number of ANN based systems, 
some of them finding their way to a fully 
commercialised product, as will be illustrated by 
some examples in this paper. It should be noted 
however that these examples are very few 
considering the total number of applications at the 
research level, and the overall research effort carried 
out at universities and research institutes around the 
world. 
 
2 THEORETICAL BACKGROUND 

A brief introduction to the artificial neural 
network structure and operation is given below.  

2.1 Artificial Neural Network Structure 
The model of the artificial neuron or processing 

element (PE) (Figure 1) forms the basis of the 
artificial neural network (ANN) structure. ANNs 
consist of layers of interconnected PEs as shown in 
Figure 2. This layered structure is the most common 
in ANNs and is usually called the fully connected 

feedforward or acyclic network. However, there are ANNs 
that do not adopt this structure. 
 

 
Figure 1. Artificial neuron structure or processing element 
(PE) (Haykin, 1999). 
 

The starting point of the ANN structure is a layer of input 
units that allows the entering of information into the network. 
The input units cannot be considered as PEs mainly because 
there is no processing of information taking place at them with 
the exception of normalisation (when required). Normalisation 
is the process of equalising the signal range (commonly to a 
range between 0.1 and 0.9) of different inputs. Normalisation 
ensures that changes in the signals of different inputs have the 
same effect on the network’s behaviour regardless of their 
magnitude. 

Following the input layer is one ore more internal or 
hidden layers. The use of the word hidden is mainly due to the 
fact that they are not accessible from outside the ANN. The 
first hidden layer is fully interconnected with the units of the 
input layer. In other words, all PEs of the hidden layer receive 
the signal from each input unit. The signals are multiplied by a 
weight which is different for every connection. In the case of 
more than one hidden layers, there will be full interconnection 
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between subsequent layers as in the case of the input 
and first hidden layer. 
 

 
Figure 2. Artificial neural network structure. 
 

The final part of the ANN structure is the output 
layer. The units of this layer are also PEs, which 
receive the signals from the last hidden layer and 
perform similar processing to that of the hidden PEs. 
If normalisation is used in the input layer, then the 
outputs of the output PEs have to be transformed 
back to the range of the original data to get sensible 
results. This is required normally when the ANN is 
used for function approximation. 

2.2 Learning 
 Learning from examples is the main 

operation of any ANN. Learning in this case means 
the ability of an ANN to improve its performance 
through an interactive process of adjusting its free 
parameters. The adjustment of an ANN’s free 
parameters is stimulated by a set of examples 
presented  to the network during the application of a 
set of well-defined rules for improving its 
performance called a learning algorithm. There are 
many different learning algorithms for ANNs, each 
with a different way of adjusting the synaptic 
weights of PEs and different way of formalising the 
measurement of the ANN’s performance. 

2.3 Application 
After the ANN reaches the required performance 

by learning examples, it can be used for computing 

output values for input that can be known to the network or 
not. It simply behaves as a series of functions that produce an 
output for a particular input. 

 
3 MINING AND ENVIRONMENTAL APPLICATIONS 

In this section a number of examples of mining and 
environmental ANN applications is presented. There are a lot 
more examples that cannot possibly fit in a single paper and 
the selection of the those presented is not based on their 
significance. 

3.1 Exploration and Reserve Estimation 
Exploration and reserve estimation commonly involves the 

prediction of various parameters characterizing a mineral 
deposit or a reservoir. The input data usually come in the form 
of samples with known positions in 3D space. The majority of 
the ANN systems developed for these predictive tasks are 
based on the relationship between modelled parameter and 
sample locations. The most common practice when 
developing the training patterns set for an ANN, is to generate 
input-output pairs with the input being the sample location and 
the desired output being the value of the modelled parameter 
at that location. In other words, most of the ANN systems treat 
the modelling of the unknown parameters as a problem of 
function approximation in the sample co-ordinates space. 

Some other systems go a step further to exploit 
information hidden in the relationship between neighbouring 
samples. The estimation of a parameter at a specific location 
in 3D space is, in this case, depending on information from 
samples around that location. 

An example of an ANN system for ore grade/reserve 
estimation was developed by Wu and Zhou (1993).  The 
network architecture, as shown in Figure 3, is a Multi-Layered 
Perceptron with four layers: an input layer, two hidden layers, 
and one output layer. The network receives two inputs, the 
Easting and Northing of samples. The two hidden layers are 
identical and have 28 units each. It is a relatively large 
network considering the dimension of the input space (2D). 

 

 
Figure 3. ANN for ore grade/reserve estimation (Wu and Zhou 
1993). 
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One of the very few examples of ANN system 

being developed to a fully commercial product, is 
Neural Technologies’ Prospect Explorer (Neural 
Mining Solutions 1996). It is a complete system 
offering data analysis, visualization, and detection of 
anomalies as well as analysis of the relationships 
between them. 

The system is based on a neural structure called 
AMAN (Advanced Modular Adaptive Network), 
shown in Figure 4. AMAN is not a type of neural 
network. It is a complex system consisting of 
different types of networks, which are trained, in 
both supervised and unsupervised mode. The user 
has a choice of networks and learning strategies 
depending on the problem at hand. 
 

 
Figure 4. Structure of AMAN – core of Prospect 
Explorer. 
 

AMAN as part of the Prospect Explorer can help 
to automate the detection of anomalies from large 
quantities of survey data. Prospect Explorer has 
been used with success in a reasonably complex 
exploration task that took place at the Girliambone 
region in New South Wales, Australia. This case 
study involved several layers of data from a copper 
mine area of 110 square kilometers. The system has 
successfully identified the already known deposits in 
the area as well as some unknown. 

The GEMNet system developed by Burnett 
(1995) is a very good example of a modular neural 
network system for grade/reserve estimation. Figure 
5 illustrates the principle of GEMNet’s operation. 
The deposit is divided into overlapping zones. The 
selection of zones was arbitrary, which is a point 
where improvement could be made. In each zone, a 
different network was trained and the final estimate 
for every point was taken as the average of the 
networks trained in the specific area. As zones were 
overlapping, there was almost always more than one 
network giving estimates. Having more than one 
estimates led to the introduction of a reliability 
measure based on the variance of the individual 

estimates – an indicator that can be used as a guide for the 
reliability of the final estimate. 
 

 
Figure 5. Grade Estimation Modular neural NETwork 
(GEMNet) (Burnett 1995). 

3.2 Geophysics 
Geophysics is a relatively new area for ANN systems. 

However, in the last few years ANNs have become a very 
popular tool in the interpretation of seismic and geophysical 
data from various sources.  

 
Figure 6. Back-propagation network used for lateral log 
inversion (Garcia and Whitman 1992). Connections between 
layers are not shown. 
 

Garcia et al. have used a MLP trained using back-
propagation for the inversion of lateral electrode well logs 
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(Garcia and Whitman 1992). Inversion represents 
the process of constructing an earth model from the 
log data. The data used for training the network 
were derived from a finite difference method that 
simulated the lateral log. The trained network was 
tested using real data and the results were compared 
with those from an automated inversion model. The 
study has shown promising results and has presented 
the advantages of the use of ANN for the specific 
problem. 

In a similar fashion, Rogers et al. used a MLP 
network for the prediction of lithology from well 
logs (Rogers, Fang, Karr, and Stanley 1992). Malki 
and Baldwin (1996) compared the results produced 
by neural networks trained using well logs from 
different service companies. More specifically, 
networks were trained using data from one service 
company and tested on data from another, and the 
study was repeated using training data from both 
companies and tested on data from each one 
individually. The results have shown that better 
performance is obtained when using data from both 
service companies. 

Wanstedt et al. applied neural networks to the 
interpretation of geophysical logs for orebody 
delineation (Wanstedt, Huang, and Malmstrom 
1998). The data used for the development and 
testing of their approach were taken from the 
Zinkgruvan mine in Sweden. The network used was 
quite small – three layers with 3 inputs, 7 hidden 
units, and 1 output. The inputs were the gamma-ray, 
density, and susceptibility, and the output was the 
ore grade (Zn, Pb, or Ag). The study reports good 
results in estimating the grades and consequently 
interpreting the lithology. Unfortunately no 
numerical measurement of the network’s 
performance is provided. 

Murat et al. used a MLP for the identification of 
the first arrival on a seismogram (Murat and 
Rudman 1992). Roessler (1992) used NETS, a 
neural network simulator written at NASA/Johnson 
Space Center to develop a neural network for 
analysing wave arrivals from seismic waves 
transmitted from one borehole and received from 
another. The network was trained on a binary pixel 
image of the seismic trace data. The input layer 
consisted of a large array (97 x 41 = 3977) of input 
nodes, the hidden layer had 50 units, and the output 
layer had two units. The network was trained to 
produce a binary pattern in its outputs, i.e. the 
outputs were either 1 or 0. The different 
combinations of outputs were indicative of the 
relative position of the first arrival to the current 
positive lobe. Once again, no numerical 
measurement of the networks performance during 
training and testing was provided in the study. 

Barhen and Reister (1999) developed DeepNet, 
a system based on the MLP that predicts well 
pseudo logs from seismic data across an oil field. 

DeepNet combines a very fast learning algorithm, systematic 
incorporation of uncertainties in the learning process, and a 
global optimisation algorithm that addresses the optimality of 
the learning process. The system has been successfully applied 
in the Pompano field in the Gulf of Mexico. 

3.3 Rock Engineering 
King et al. have developed an unsupervised neural 

network for the discovering of patterns in roof bolter drill 
data. The network successfully classified 617 drill patterns to 
just 9 or 16 unique features representing major geologic 
features of a mine roof.  The patterns consisted of the 
penetration rate, thrust, drill speed, and torque. A system 
consisting of this network and an expert system was 
developed for the evaluation of coal mine roof supports (King,  
Hicks, and Signer 1992, 1993). 

Millar et al. used self organising networks to model the 
complex behaviour of rock masses by classifying input 
variables related to the rock stability into two groups: failure 
or stability (Millar and Hudson 1993). 

Walter (1999) used Kohonen networks for the 
classification of mine roof strata into one of 32 strength 
classes. The developed system can provide an estimate of 
strength within two seconds giving the drill operator a 
warning almost in real time when a potentially dangerous 
layer is reached. 

3.4 Mineral Processing 
Neural networks have been successfully applied to a 

number of pattern classification problems. Particle shape and 
size analysis seems to be a natural field of application for 
ANNs and specially for unsupervised techniques. 

Maxwell et al. developed an ANN based system for 
particle size analysis based on video images. The system 
analyses images from material on a conveyor and predicts the 
particle size distribution (Maxwell, Denby, and Pitts 1995).  

Oja and Nyström (1997) applied self-organising maps 
(SOM) for particle shape quantification. Image analysis is 
performed to mineral slurry particles by use of a SOM which 
extracts the features affecting the behaviour of powders and 
slurries. The training data set consisted of 3000 binary images 
of 500 particles. The produced map size was 12 x 10. The 
developed SOM was tested on 360 particle images with 
success. The test showed that the SOM was capable of 
clustering differently minerals that did not have strong shape 
features. 

Deventer et al. used again the SOM for on-line 
visualisation of flotation performance (van Deventer, 
Bezuidenhout and Moolman 1997). The structure of the froth 
is quantified by the neighbouring grey level dependence 
matrix. The SOM had a map size of 20 x 20 and there were 
three classifications of Zn grade peaks as being positive 
(Class_+1), zero (Class_0), or negative (Class_-1) for each of 
the image features. The classification was based on a number 
of image features. The developed SOM was to be used as part 
of an automated computer vision system for the control of 
flotation circuits. 
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Petersen and Lorenzen (1997) applied the SOM 

to the modelling of gold liberation from diagnostic 
leaching data. The data came from seven different 
gold mines in South Africa. The ores from the mines 
were fed to mills and the ore samples were screened 
into three size intervals. One of the fractions was 
further screened into six size fractions giving a total 
of eight fractions. Representative samples were then 
fed to a ball mill, and the product was screened into 
the same six size fractions. On each of the fractions, 
diagnostic leaching was performed for each of the 
ore types. The percentage of gold deportment and 
percentage of gangue, the percentage of free gold in 
each fraction, the head grade, and the mass 
distribution were projected to a 10 x 10 map. The 
clustering produced was well defined for the 
different sample sources (gold mines) except for one 
of them. 

3.5 Remote Sensing 
Probably one of the most popular areas of neural 

network application, remote sensing presents 
problems which are ideal for architectures such as 
the SOM, the LVQ, or even the standard MLP. The 
examples given here, even though not directly 
linked to mining activities, demonstrate the potential 
of ANNs in this field. 

Bischof et al. used a MLP for the multispectral 
classification of Landsat images (Bischof, Schneider 
and Pinz 1992). These images came from a Landsat 
Thematic Mapper (TM) and were 512 x 512 pixels 
in size. They were also analysed into 7 spectral 
channels (bands) which were used as the inputs to 
the network (13 units for each band representing 
different intervals from 0 to 255). The network then 
had to learn to classify the 7 band values to one of 
four types of land (built-up land, forest, water, and 
agricultural land), each represented by an output of 
the network. Even though this architecture gave 
good results, the developers extended the network to 
include a 7 x 7 pixel map of texture from band 5. 
Naturally the number of hidden units was increased 
from 5 to 8 units. The results from this extended 
architecture were better than the non-extended one 
in all types of land. 

Gopal and Woodcock (1996) used a MLP for the 
detection of forest change from Landsat TM images 
between 1988 and 1991. A 10-input vector of 10 
TM bands (5 from 1998 and 5 from 1991) is used 
with the single output being the absolute or the 
relative change. The results obtained with the 
developed MLP were better than those obtained 
with the conventional method for this task. 

Poulton and Zaverton (1992) give a comparative 
study between different neural network architectures 
used for classification of TM images. The 
architectures compare were the back-propagation 
network, LVQ, counter-propagation network, 
functional link, probabilistic network, and the SOM. 

From the tests performed, they concluded that the LVQ 
architecture was the most flexible and robust one. They also 
suggested the use of ANNs for the analysis of geochemical 
and geophysical data, location of favorable prospects using 
GIS data, lithologic mapping from remote sensing data, and 
estimation of parameters in a similar way with kriging. 

Krasnopolsky (1999) used a MLP for the retrieval of 
multiple geophysical parameters from satellite data. These 
parameters were the surface wind speed, columnar water 
vapor, columnar liquid water, and sea surface temperature (the 
four outputs of the MLP). The MLP had five inputs taken 
from five Special Sensor Microwave Imager brightness 
temperatures. The hidden layer had 12 units. The simultaneous 
retrieval of multiple parameters improved the retrieval of each 
one individually allowing physically coherent and consistent 
geophysical fields to be produced. 

Xiao and Chandrasekar (1997) used a MLP for rainfall 
estimation from radar observations. More specifically, two 
networks have been developed, one using reflectivity as the 
only input, and the other using both reflectivity and 
differential reflectivity as the inputs. The networks were 
trained on data obtained from a multi-parameter radar and 
raingages from the Kennedy Space Center. The trained 
networks were then used to estimate rainfall for four days 
during the summer of 1991. The trainning patterns consisted 
of a square grid (3 x 3km) of reflectivity values as well as 
distances from the grid nodes to the point of estimation. The 
raingage values were used as the target outputs. The trained 
network estimates and raingage values have shown good 
agreement at all sites. 

3.6 Process Control-Optimisation and Equipment 
Selection 

Process control and optimisation tends to be a tedious task 
involving large amounts of data from very different sources. 
ANNs are ideal for handling such tasks and this is why many 
researchers in the field of process control turned to them for 
developing solutions. Process control and optimisation of 
mineral processing plants as well as the mining process itself 
are a special case of these tasks and can therefore be 
approached by neural networks. 

Van der Walt et al. used the MLP for the simulation of 
Resin-in-pulp process for gold recovery (Van der Walt, van 
Deventer, Barnard and Oosthuizen 1992). Flament et al. 
(1993) used the MLP for the identification of the dynamics of 
a mineral grinding circuit and the development of a control 
strategy. Bradford (1994) used neural networks in a number of 
studies modelling the behaviour of different parts of a mineral 
processing plant. 

Ryman-Tubb and Bolt of Neural Mining Solutions Pty Ltd 
(1996) describe the use of the AMAN architecture (described 
before) for integrated process system modelling and 
optimisation. The suggested areas of application include froth 
flotation, carbon-in-pulp (CIP), milling, and others. Their case 
study presented a real-life example based on a multi-stage 
copper extraction process. The trained networks (MLPs) were 
used for the following: 
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• Prediction of stripped copper cathode from 

electrowinning 
• Prediction of raw material usage 
• Identification of key plant parameters 
• Analysis of the effect of plant input 

parameters 
• Economic optimisation to determine cost-

effective control settings 
 
The developers claimed the following benefits 

from the ANN approach: 
 
• Decreased raw material costs 
• Increased copper production 
• Optimised planning of new and existing 

heap operations 
• Ability to implement “Just-in-time” 

purchasing policy 
• Planning of new heaps 
• Reduce reliance on individual and human 

operation 
 
Finally, Schofield (1992) investigated the use of 

neural networks as well as other AI tools for the 
selection of surface mining equipment. 
 
4 CONCLUSIONS 

Quite clearly, the spectrum of neural network 
applications in mining and environmental 
engineering is very wide. This is demonstrated by a 
number of exciting and very promising studies by a 
number of people from different scientific fields. 
The examples presented in this paper support the 
choice of ANNs as the basis for developing 
solutions to mining problems were conventional 
techniques fail in one way or another. Mining is 
always about time and money and so far neural 
networks have shown that they can be very good in 
both terms. The systems described in the above 
examples were fast, reliable and most of the times 
provided a very stable theoretical background on 
which the validity of the proposed solution is based. 

The general trend in the mining and 
environmental industry for automation to the 
greatest degree calls for technologies such as the 
ANNs that can utilise large amounts of data for the 
development of models which otherwise are very 
difficult or sometimes even impossible to identify. 
The speed of ANNs – at least in application mode – 
also allows the development of real- or almost real-
time systems which can quickly recognize potential 
problems or even danger during a certain process. 

Another advantage of ANNs is in the 
minimisation of the necessary assumptions for a 
given problem. Specially in the case of grade 
estimation, this attribute proves very valuable. The 
examples of ANN application to grade estimation 
given earlier in this paper supported this and other 
advantages of neural networks. 
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